Stabilizing and commuting cochains

نویسندگان

  • Max KAROUBI
  • M. Karoubi
چکیده

As it is well known in K-theory, stabilization of matrices enables them to commute “up to homotopy”. The purpose of this short paper is to describe an analogous philosophy for cochains on a space. It is in fact a direct application of a paper of Henri Cartan [1], together with a new idea of stabilization for cochains, similar to matrices. The application below may be also deduced from a paper of J. Halperin and J. Stasheff [2] by a quite different method. This paper is part of a joint project with P. Baum about the cohomology of homogeneous spaces. Since it has some independent interest, it might be useful to present it on its own right.  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Stabilisation et commutation des cochaînes Résumé. Comme il est bien connu en K-théorie, la stabilisation des matrices permet de les faire commuter « à homotopie près ». Dans cette Note, nous décrivons une philosophie analogue pour les cochaînes sur un espace. Celle-ci est en fait une conséquence directe d’un article de Henri Cartan [1] et d’une nouvelle idée de stabilisation des cochaînes, analogue à celle de la stabilisation des matrices. Nous donnons aussi une application qui peut être déduite également d’un article de J. Halperin et J. Stasheff [2] par une méthode entièrement différente. Cet article fait partie d’un projet de recherche avec P. Baum sur la cohomologie des espaces homogènes. Puisqu’il a un intérêt en lui-même, nous avons préféré le publier indépendamment de cet objectif.  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS THEOREM. – Let k be a commutative ring, X an arbitrary space and C∗(X) the differential graded algebra (DGA) of k-cochains on X . Then there exists a functorially defined DGA Ĉ∗(X) and a DGAquasi isomorphism C∗(X)→ Ĉ∗(X) with the following property. For any countable sequence of elements {xi} in the cohomology H∗(X) (with k-coefficients), we can find cochain representatives x̂i of the xi in Ĉ∗(X) such that the x̂i’s commute with each other (in the graded sense). The DGA Ĉ∗(X) is called the “stabilization” of C∗(X). Proof. – Without loss of generality we may assume that X is a simplicial set. Let us consider the free k-moduleC(∆m) with basis the maps from [r] to [m], where [p] denotes in general the finite set {0, . . . , p}. It is well known [1] that the C∗(∆ ) define a simplicial DGA where ∗ denotes the degree and the simplicial dimension. Moreover, C∗(X) is quasi-isomorphic to the k-module Mor(X ,C∗(∆ )) of simplicial maps Note présentée par Alain CONNES. S0764-4442(01)02118-8/FLA  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés 769

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomologous Harmonic Cochains

We describe algorithms for finding harmonic cochains, an essential ingredient for solving elliptic partial differential equations using finite element or discrete exterior calculus. Harmonic cochains are also useful in computational topology and computer graphics. We focus on finding harmonic cochains cohomologous to a given cocycle. Amongst other things, this allows for localization near topol...

متن کامل

Geometric Structures on the Cochains of a Manifold

In this paper we develop several algebraic structures on the simplicial cochains of a triangulated manifold that are analogues of objects in differential geometry. We study a cochain product and prove several statements about its convergence to the wedge product on differential forms. Also, for cochains with an inner product, we define a combinatorial Hodge star operator, and describe some appl...

متن کامل

On the Algebra and Geometry of a Manifold’s Chains and Cochains

of the Dissertation On the Algebra and Geometry of a Manifold’s Chains and Cochains by Scott Owen Wilson Doctor of Philosophy in Mathematics Stony Brook University 2005 This dissertation consists of two parts, each of which describes new algebraic and geometric structures defined on chain complexes associated to a manifold. In the first part we define, on the simplicial cochains of a triangulat...

متن کامل

Twisted Cochains and Higher Torsion

This paper gives a short summary of the central role played by Ed Brown’s “twisted cochains” in higher Franz-Reidemeister (FR) torsion and higher analytic torsion. Briefly, any fiber bundle gives a twisted cochain which is unique up to fiberwise homotopy equivalence. However, when they are based, the difference between two of them is a higher algebraic K-theory class measured by higher FR torsi...

متن کامل

Twisting Cochains and Higher Torsion

This paper gives a short summary of the central role played by Ed Brown’s “twisting cochains” in higher FranzReidemeister (FR) torsion and higher analytic torsion. Briefly, any fiber bundle gives a twisting cochain which is unique up to fiberwise homotopy equivalence. However, when they are based, the difference between two of them is a higher algebraic K-theory class measured by higher FR tors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001